Improving the signal detection accuracy of functional Magnetic Resonance Imaging
NeuroImage, ISSN: 1053-8119, Vol: 176, Page: 92-109
2018
- 5Citations
- 29Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- CrossRef5
- Captures29
- Readers29
- 29
Article Description
A major drawback of functional Magnetic Resonance Imaging (fMRI) concerns the lack of detection accuracy of the measured signal. Although this limitation stems in part from the neuro-vascular nature of the fMRI signal, it also reflects particular methodological decisions in the fMRI data analysis pathway. Here we show that the signal detection accuracy of fMRI is affected by the specific way in which whole-brain volumes are created from individually acquired brain slices, and by the method of statistically extracting signals from the sampled data. To address these limitations, we propose a new framework for fMRI data analysis. The new framework creates whole-brain volumes from individual brain slices that are all acquired at the same point in time relative to a presented stimulus. These whole-brain volumes contain minimal temporal distortions, and are available at a high temporal resolution. In addition, statistical signal extraction occurred on the basis of a non-standard time point-by-time point approach. We evaluated the detection accuracy of the extracted signal in the standard and new framework with simulated and real-world fMRI data. The new slice-based data-analytic framework yields greatly improved signal detection accuracy of fMRI signals.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1053811918300764; http://dx.doi.org/10.1016/j.neuroimage.2018.01.076; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85046154596&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/29655939; https://linkinghub.elsevier.com/retrieve/pii/S1053811918300764; https://dx.doi.org/10.1016/j.neuroimage.2018.01.076
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know