Motor task-to-task transfer learning for motor imagery brain-computer interfaces
NeuroImage, ISSN: 1053-8119, Vol: 302, Page: 120906
2024
- 1Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Motor imagery (MI) is one of the popular control paradigms in the non-invasive brain-computer interface (BCI) field. MI-BCI generally requires users to conduct the imagination of movement (e.g., left or right hand) to collect training data for generating a classification model during the calibration phase. However, this calibration phase is generally time-consuming and tedious, as users conduct the imagination of hand movement several times without being given feedback for an extended period. This obstacle makes MI-BCI non user-friendly and hinders its use. On the other hand, motor execution (ME) and motor observation (MO) are relatively easier tasks, yield lower fatigue than MI, and share similar neural mechanisms to MI. However, few studies have integrated these three tasks into BCIs. In this study, we propose a new task-to-task transfer learning approach of 3-motor tasks (ME, MO, and MI) for building a better user-friendly MI-BCI. For this study, 28 subjects participated in 3-motor tasks experiment, and electroencephalography (EEG) was acquired. User opinions regarding the 3-motor tasks were also collected through questionnaire survey. The 3-motor tasks showed a power decrease in the alpha rhythm, known as event-related desynchronization, but with slight differences in the temporal patterns. In the classification analysis, the cross-validated accuracy (within-task) was 67.05 % for ME, 65.93 % for MI, and 73.16 % for MO on average. Consistently with the results, the subjects scored MI (3.16) as the most difficult task compared with MO (1.42) and ME (1.41), with p < 0.05. In the analysis of task-to-task transfer learning, where training and testing are performed using different task datasets, the ME–trained model yielded an accuracy of 65.93 % (MI test), which is statistically similar to the within-task accuracy ( p > 0.05). The MO–trained model achieved an accuracy of 60.82 % (MI test). On the other hand, combining two datasets yielded interesting results. ME and 50 % of the MI–trained model (50-shot) classified MI with a 69.21 % accuracy, which outperformed the within-task accuracy ( p < 0.05), and MO and 50 % of the MI–trained model showed an accuracy of 66.75 %. Of the low performers with a within-task accuracy of 70 % or less, 90 % ( n = 21) of the subjects improved in training with ME, and 76.2 % ( n = 16) improved in training with MO on the MI test at 50-shot. These results demonstrate that task-to-task transfer learning is possible and could be a promising approach to building a user-friendly training protocol in MI-BCI.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1053811924004038; http://dx.doi.org/10.1016/j.neuroimage.2024.120906; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85207749339&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39490945; https://linkinghub.elsevier.com/retrieve/pii/S1053811924004038
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know