Lactate: Beyond a mere fuel in the epileptic brain
Neuropharmacology, ISSN: 0028-3908, Vol: 266, Page: 110273
2025
- 1Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Epilepsy, a prevalent neurological disorder characterized by spontaneous recurrent seizures, significantly impacts physiological and cognitive functions. Emerging evidence suggests a crucial role for metabolic factors, particularly lactate, in epilepsy. We discuss the applicability of the astrocyte-neuron lactate shuttle (ANLS) model during acute seizure events and examine lactate's metabolic adaptation in epilepsy progression. Additionally, the roles of lactate metabolism in microglia and oligodendrocytes are considered, aiming to supplement our understanding of neuro-glial metabolic interactions as extensions of the ANLS model. Additionally, lactate modulates neuronal excitability via its interaction with hydroxycarboxylic acid receptor 1 (HCAR1), alongside additional mechanisms involving acid-sensing ion channels (ASICs) and ATP-sensitive potassium (KATP) channels, which contribute as secondary modulatory pathways. In conclusion, we propose that lactate functions as more than a mere fuel source in the epileptic brain, offering potential insights into new therapeutic targets for seizure control.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0028390824004428; http://dx.doi.org/10.1016/j.neuropharm.2024.110273; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85213218984&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39719259; https://linkinghub.elsevier.com/retrieve/pii/S0028390824004428; https://dx.doi.org/10.1016/j.neuropharm.2024.110273
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know