Human-scale Brain Simulation via Supercomputer: A Case Study on the Cerebellum
Neuroscience, ISSN: 0306-4522, Vol: 462, Page: 235-246
2021
- 16Citations
- 41Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- 16
- CrossRef2
- Captures41
- Readers41
- 41
Review Description
Performance of supercomputers has been steadily and exponentially increasing for the past 20 years, and is expected to increase further. This unprecedented computational power enables us to build and simulate large-scale neural network models composed of tens of billions of neurons and tens of trillions of synapses with detailed anatomical connections and realistic physiological parameters. Such “human-scale” brain simulation could be considered a milestone in computational neuroscience and even in general neuroscience. Towards this milestone, it is mandatory to introduce modern high-performance computing technology into neuroscience research. In this article, we provide an introductory landscape about large-scale brain simulation on supercomputers from the viewpoints of computational neuroscience and modern high-performance computing technology for specialists in experimental as well as computational neurosciences. This introduction to modeling and simulation methods is followed by a review of various representative large-scale simulation studies conducted to date. Then, we direct our attention to the cerebellum, with a review of more simulation studies specific to that region. Furthermore, we present recent simulation results of a human-scale cerebellar network model composed of 86 billion neurons on the Japanese flagship supercomputer K (now retired). Finally, we discuss the necessity and importance of human-scale brain simulation, and suggest future directions of such large-scale brain simulation research.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S030645222100021X; http://dx.doi.org/10.1016/j.neuroscience.2021.01.014; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85101886375&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/33482329; https://linkinghub.elsevier.com/retrieve/pii/S030645222100021X; https://dx.doi.org/10.1016/j.neuroscience.2021.01.014
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know