Grasping and Manipulation: Neural Bases and Anatomical Circuitry in Humans
Neuroscience, ISSN: 0306-4522, Vol: 458, Page: 203-212
2021
- 15Citations
- 50Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- Captures50
- Readers50
- 50
Review Description
Neurophysiological and neuroimaging evidence suggests a significant contribution of several brain areas, including subdivisions of the parietal and the premotor cortex, during the processing of different components of hand and arm movements. Many investigations improved our knowledge about the neural processes underlying the execution of reaching and grasping actions, while few studies have directly investigated object manipulation. Most studies on the latter topic concern the use of tools to achieve specific goals. Yet, there are very few studies on pure manipulation performed in order to explore and recognize objects, as well as on manipulation performed with a high level of manual dexterity. Another dimension that is quite neglected by the available studies on grasping and manipulation is, on the one hand, the contribution of the subcortical nodes, first of all the basal ganglia and cerebellum, to these functions, and, on the other hand, recurrent connections of these structures with cortical areas. In the first part, we have reviewed the parieto-premotor and subcortical circuits underlying reaching and grasping in humans, with a focus on functional neuroimaging data. Then, we have described the main structures recruited during object manipulation. We have also reported the contribution of recent structural connectivity techniques whereby the cortico-cortical and cortico-subcortical connections of grasping-related and manipulation-related areas in the human brain can be determined. Based on our review, we have concluded that studies on cortical and subcortical circuits involved in grasping and manipulation might be promising to provide new insights about motor learning and brain plasticity in patients with motor disorders.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0306452221000427; http://dx.doi.org/10.1016/j.neuroscience.2021.01.028; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85100976863&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/33516776; https://linkinghub.elsevier.com/retrieve/pii/S0306452221000427; https://dx.doi.org/10.1016/j.neuroscience.2021.01.028
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know