Vision-Dependent and -Independent Molecular Maturation of Mouse Retinal Ganglion Cells
Neuroscience, ISSN: 0306-4522, Vol: 508, Page: 153-173
2023
- 9Citations
- 32Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- CrossRef2
- Captures32
- Readers32
- 32
- Mentions1
- News Mentions1
- News1
Most Recent News
Evolution of neuronal cell classes and types in the vertebrate retina
Nature, Published online: 13 December 2023; doi:10.1038/s41586-023-06638-9 Single-cell and single-nucleus transcriptomic analysis of retina from 17 vertebrate species shows high conservation of retinal cell types and suggests that midget retinal ganglion cells in primates evolved from orthologous cells in ancestral mammals.
Article Description
The development and connectivity of retinal ganglion cells (RGCs), the retina’s sole output neurons, are patterned by activity-independent transcriptional programs and activity-dependent remodeling. To inventory the molecular correlates of these influences, we applied high-throughput single-cell RNA sequencing (scRNA-seq) to mouse RGCs at six embryonic and postnatal ages. We identified temporally regulated modules of genes that correlate with, and likely regulate, multiple phases of RGC development, ranging from differentiation and axon guidance to synaptic recognition and refinement. Some of these genes are expressed broadly while others, including key transcription factors and recognition molecules, are selectively expressed by one or a few of the 45 transcriptomically distinct types defined previously in adult mice. Next, we used these results as a foundation to analyze the transcriptomes of RGCs in mice lacking visual experience due to dark rearing from birth or to mutations that ablate either bipolar or photoreceptor cells. 98.5% of visually deprived (VD) RGCs could be unequivocally assigned to a single RGC type based on their transcriptional profiles, demonstrating that visual activity is dispensable for acquisition and maintenance of RGC type identity. However, visual deprivation significantly reduced the transcriptomic distinctions among RGC types, implying that activity is required for complete RGC maturation or maintenance. Consistent with this notion, transcriptomic alternations in VD RGCs significantly overlapped with gene modules found in developing RGCs. Our results provide a resource for mechanistic analyses of RGC differentiation and maturation, and for investigating the role of activity in these processes.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0306452222003669; http://dx.doi.org/10.1016/j.neuroscience.2022.07.013; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85135321480&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35870562; https://linkinghub.elsevier.com/retrieve/pii/S0306452222003669; https://dx.doi.org/10.1016/j.neuroscience.2022.07.013
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know