Remodeling of Neuromuscular Junctions in Target Muscle Following Nerve Regeneration in Mice After Delayed Peripheral Nerve Repair
Neuroscience, ISSN: 0306-4522, Vol: 524, Page: 197-208
2023
- 2Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Peripheral nerve injury (PNI) induces severe functional loss in extremities. Progressive denervation and atrophy occur in the muscles if the nerve repair is delayed for long periods of the time. To overcome these difficulties, detailed mechanisms should be determined for neuromuscular junction (NMJ) degeneration in target muscles after PNI and regeneration after nerve repair. We established two models of end-to-end neurorrhaphy and allogeneic nerve grafting in the chronic phase after common peroneal nerve injury in female mice (n = 100 in total). We evaluated motor function, histology, and gene expression in the target muscles during their regeneration processes and compared the models. We found that the functional recovery with allogeneic nerve grafting was superior to that with end-to-end neurorrhaphy, and the number of reinnervated NMJs and Schwann cells was increased at 12 weeks after allograft. In addition, NMJ- and Schwann cell-related molecules showed high expression in the target muscle in the allograft model. These results suggest that Schwann cell migrating from the allograft might play a crucial role in nerve regeneration in the chronic phase after PNI. The relationship between the NMJ and Schwann cells should be further investigated in the target muscle.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0306452223002191; http://dx.doi.org/10.1016/j.neuroscience.2023.05.008; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85162092704&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37201862; https://linkinghub.elsevier.com/retrieve/pii/S0306452223002191; https://dx.doi.org/10.1016/j.neuroscience.2023.05.008
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know