Optimization of biodiesel production in a high throughput branched microreactor
Energy Nexus, ISSN: 2772-4271, Vol: 13, Page: 100276
2024
- 16Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures16
- Readers16
- 16
Article Description
Biodiesel as a renewable and environmentally friendly fuel can be considered an alternative to fossil fuel in industries, and one of the promising approaches to developing biodiesel yield is its production in microreactors. However, the produced quantity from microreactors is limited which necessitates higher throughput microreactors to be produced, maintaining the high yield of biodiesel. Therefore, this study investigated the transesterification of waste cooking oil (WCO) with methanol in the presence of sodium hydroxide as the catalyst using a novel branched microreactor, used for higher throughput applications. Thus, a novel four-micro serpentine-based microreactor was designed and fabricated with no external tubing. Biodiesel is produced in the fabricated microreactor and the Box-Behnken Design method (BBD) in Minitab software was used to design the experiments with different operating conditions: methanol to oil molar ratio (6:1–12:1), catalyst concentration (0.5–1.5 wt%), and reaction temperature (55–65 °C) to optimize the biodiesel volume yield in the designed microreactor. The optimum biodiesel yield using GC–MS analysis was found to be 82.8 % at a methanol to oil molar ratio of 12:1, 1.5 wt% catalyst concentration, and reaction temperature of 59.4 °C while maintaining the reactants’ inlet flow rate of 20 µL/s. Production of up to 35 mL biodiesel was collected in 30 min only. In addition, the microreactor achieved up to 97 % conversion at inlet flow rates of 8.5 µL/s.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S277242712400007X; http://dx.doi.org/10.1016/j.nexus.2024.100276; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85187162893&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S277242712400007X; https://dx.doi.org/10.1016/j.nexus.2024.100276
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know