Optimization of multilayer capacitive charge division anode for MCP imaging detectors
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN: 0168-9002, Vol: 1063, Page: 169285
2024
- 1Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A three-dimensional numerical model developed based on the finite element method to simulate the position-reconstruction performance of multilayer capacitive anodes is presented. The charge collection efficiency and position nonlinearity are calculated for different electrode layers, patterns, and sizes, as well as the distance between the bottom microchannel plate (MCP) and induction layer. The position nonlinearity exhibits an approximately linear relationship with the electrode size and the distance between the bottom MCP and induction layer. By increasing the electrode area in the perimeter region and designing 2.2 mm square electrodes in the central region, a position nonlinearity of 3.36% with a distance of 5 mm between the bottom MCP and induction layer is achieved. The imaging performance of the six multilayer capacitive anodes is evaluated using a custom-designed detector prototype, and the experimental results validate the simulation results. The comprehensively optimized capacitive anode shows an imaging nonlinearity of 0.91% in the experiment.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0168900224002110; http://dx.doi.org/10.1016/j.nima.2024.169285; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85189503687&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0168900224002110; https://dx.doi.org/10.1016/j.nima.2024.169285
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know