PlumX Metrics
Embed PlumX Metrics

Smart poly(oligo(propylene glycol) methacrylate) hydrogel prepared by gamma radiation

Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, ISSN: 0168-583X, Vol: 342, Page: 206-214
2015
  • 24
    Citations
  • 0
    Usage
  • 17
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    24
    • Citation Indexes
      24
  • Captures
    17

Article Description

The synthesis of poly(oligo(propylene glycol) methacrylate) (POPGMA) from functionalised oligo(propylene glycol) methacrylate (OPGMA) monomers by gamma radiation-induced radical polymerisation is reported for the first time; POPGMA homopolymeric hydrogel with oligo(propylene glycol) (OPG) pendant chains, as a non-linear PPGMA-analogue, was synthesised from an monomer–solvent (OPGMA 375 –water/ethanol) mixture at different irradiation doses (5, 10, 25, and 40 kGy). Determination of the gel fraction was conducted after synthesis. The swelling properties of the POPGMA hydrogel were preliminarily investigated over wide pH (2.2–9.0) and temperature (4–70 °C) ranges. Additional characterisation of structure and properties was conducted by UV–vis and Fourier transform infrared (FTIR) spectroscopy as well as by differential scanning calorimetry (DSC). In order to evaluate the potential for biomedical applications, biocompatibility (cytocompatibility and haemolytic activity) studies were performed as well. Sol–gel conversion was relatively high for all irradiation doses, indicating radiation-induced synthesis as a good method for fabricating this hydrogel. Thermoresponsiveness and variations in swelling capacity as a result of thermosensitive OPG pendant chains with a lower critical solution temperature (LCST) were mainly observed below room temperature; thus, the volume phase transition temperature (VPTT) of POPGMA homopolymeric hydrogel is about 15 °C. Furthermore, POPGMA has satisfactory biocompatibility. The results indicate that the hydrogels with propylene glycol pendant chains can be easily prepared by gamma radiation and have potential for different applications as smart and biocompatible polymers.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know