Magnetic resonance imaging-based criteria to differentiate dysferlinopathy from other genetic muscle diseases
Neuromuscular Disorders, ISSN: 0960-8966, Vol: 34, Page: 54-60
2024
- 2Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The identification of disease-characteristic patterns of muscle fatty replacement in magnetic resonance imaging (MRI) is helpful for diagnosing neuromuscular diseases. In the Clinical Outcome Study of Dysferlinopathy, eight diagnostic rules were described based on MRI findings. Our aim is to confirm that they are useful to differentiate dysferlinopathy ( DYSF ) from other genetic muscle diseases (GMD). The rules were applied to 182 MRIs of dysferlinopathy patients and 1000 MRIs of patients with 10 other GMD. We calculated sensitivity (S), specificity (Sp), positive and negative predictive values (PPV/NPV) and accuracy (Ac) for each rule. Five of the rules were more frequently met by the DYSF group. Patterns observed in patients with FKRP, ANO5 and CAPN3 myopathies were similar to the DYSF pattern, whereas patterns observed in patients with OPMD, laminopathy and dystrophinopathy were clearly different. We built a model using the five criteria more frequently met by DYSF patients that obtained a S 95.9%, Sp 46.1%, Ac 66.8%, PPV 56% and NPV 94% to distinguish dysferlinopathies from other diseases. Our findings support the use of MRI in the diagnosis of dysferlinopathy, but also identify the need to externally validate “disease-specific” MRI-based diagnostic criteria using MRIs of other GMD patients.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960896623007939; http://dx.doi.org/10.1016/j.nmd.2023.11.004; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85178202141&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38007344; https://linkinghub.elsevier.com/retrieve/pii/S0960896623007939; https://dx.doi.org/10.1016/j.nmd.2023.11.004
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know