Cortisol-dependent impairment of dendrite plasticity in human dopaminergic neurons derived from hiPSCs is restored by ketamine: Relevance for major depressive disorders.
Neuroscience Applied, ISSN: 2772-4085, Vol: 3, Page: 104049
2024
- 3Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Impaired neuroplasticity in neurons endowed in limbic circuits is considered a hallmark of chronic stress and depression. The reasons for this impairment are still partially unclear, but converging findings suggest that it can be reverted by exposure to rapid-acting antidepressants. In this study we revamped the hypothesis that the abnormal high circulating levels of cortisol observed in Major Depressive Disorders with anhedonia may contribute to drive the limbic circuit neuroplasticity impairment. Here we used an established in-vitro translational model based on human iPSC-derived dopaminergic neurons to extend the evidence obtained in rodents of glucocorticoid-induced hypotrophy of cortical dendrites. The predictive value of this model was tested by assessing the reversal potential of rapid-acting antidepressants on cortisol-induced hypotrophy. Human mesencephalic dopaminergic neurons were differentiated in-vitro from healthy donor iPSCs for 60–70 days. Cortisol effects were assessed by measuring maximal dendrite length, primary dendrite number and soma area 3 days after last exposure. Concentration- and time-response curves were initially established. Cortisol produced a concentration- and time-dependent reduction of dendritic arborization of human dopaminergic neurons, with maximal effects at 50 μM for 4-day dosing. These effects were reverted when followed by 1-hr exposure to ketamine or (2R,6R)-hydroxynorketamine at concentrations of 0.01 μM and 0.05 μM, respectively, resulting approximately 10- or 100-fold lower than those effective in neurons not exposed to cortisol. Overall, in this study high cortisol impaired dendritic arborization in human dopaminergic neurons and sensitized their neuroplasticity response to very low doses of rapid-acting antidepressants known to upregulate AMPA-mediated glutamatergic neurotransmission.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2772408524001145; http://dx.doi.org/10.1016/j.nsa.2024.104049; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85197537336&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2772408524001145; https://dx.doi.org/10.1016/j.nsa.2024.104049
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know