Revealing insights into hydrodynamic noise induced by different cavitating flows around a hydrofoil
Ocean Engineering, ISSN: 0029-8018, Vol: 291, Page: 116431
2024
- 7Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Cavitation-induced noise hazards in marine environments have raised significant concerns. This paper presents a study on the flow noise generated by cavitating flow around a model-scale NACA66 hydrofoil, utilizing the permeable acoustic analogy method. Through Large Eddy Simulation and the Schnerr-Sauer cavitation model, the study captures the cavitation flow pattern, aligning with experimental observations. The research conducts a detailed analysis of the monopole and dipole noise components, providing insights into their characteristics under different cavitation conditions (cavitation number σ = 0.60, 0.83, 1.29, and 1.44). The results revealed a noteworthy trend where the proportion of the dipole component increases as the cavitation number σ decreases. Furthermore, the study uncovered the mechanism behind monopole noise induction in unsteady cavitating flows, offering insights into different types of sound impulse sources associated with cavitation collapse. Particularly, the collapse of clouds during secondary shedding is identified as a significant source of highly intense impulses, surpassing the levels observed in other cavitation flow stages. Additionally, deeper exploration demonstrated the co-action of vortex stretching and dilatation, contributing to the enhanced deformation, breakdown, and condensation of vapor structures, consequently significantly accelerating the collapse process.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0029801823028159; http://dx.doi.org/10.1016/j.oceaneng.2023.116431; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85179106947&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0029801823028159; https://dx.doi.org/10.1016/j.oceaneng.2023.116431
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know