ANN-based surrogate model for the structural evaluation of jacket support structures for offshore wind turbines
Ocean Engineering, ISSN: 0029-8018, Vol: 317, Page: 119984
2025
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures6
- Readers6
Article Description
The expansion of offshore wind farms, driven by better offshore wind conditions and fewer spatial limitations, has promoted the growth of this technology. This study focuses on the design of jacket support structures for Offshore Wind Turbines, which are suitable for deeper waters. However, the structural analysis required for designing these structures is computationally intensive due to multiple load cases and numerous checks. To reduce this computational cost, artificial-neural-network-based surrogate models capable of estimating the feasibility of a jacket structure acting as the support structure for any given wind turbine at a specific site are developed. A synthetic dataset generated through random sampling and evaluated by a structural model is utilized for training and testing the models. Two kind of models are compared: one is trained to estimate global feasibility, while the other estimates compliance with each of the structural partial requirements. Also, several assembly methods are proposed and compared. The best-performing model shows great classification metrics, with a Matthews Correlation Coefficient of 0.674, enabling an initial assessment of the structural feasibility. The low computational cost of artificial neural networks compared to structural models makes this surrogate model useful for accelerating otherwise prohibitive parametric studies or optimization processes.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know