Pol-InSAR-Island - A benchmark dataset for multi-frequency Pol-InSAR data land cover classification
ISPRS Open Journal of Photogrammetry and Remote Sensing, ISSN: 2667-3932, Vol: 10, Page: 100047
2023
- 3Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper presents Pol-InSAR-Island, the first publicly available multi-frequency Polarimetric Interferometric Synthetic Aperture Radar (Pol-InSAR) dataset labeled with detailed land cover classes, which serves as a challenging benchmark dataset for land cover classification. In recent years, machine learning has become a powerful tool for remote sensing image analysis. While there are numerous large-scale benchmark datasets for training and evaluating machine learning models for the analysis of optical data, the availability of labeled SAR or, more specifically, Pol-InSAR data is very limited. The lack of labeled data for training, as well as for testing and comparing different approaches, hinders the rapid development of machine learning algorithms for Pol-InSAR image analysis. The Pol-InSAR-Island benchmark dataset presented in this paper aims to fill this gap. The dataset consists of Pol-InSAR data acquired in S- and L-band by DLR's airborne F-SAR system over the East Frisian island Baltrum. The interferometric image pairs are the result of a repeat-pass measurement with a time offset of several minutes. The image data are given as 6 × 6 coherency matrices in ground range on a 1 m × 1m grid. Pixel-accurate class labels, consisting of 12 different land cover classes, are generated in a semi-automatic process based on an existing biotope type map and visual interpretation of SAR and optical images. Fixed training and test subsets are defined to ensure the comparability of different approaches trained and tested prospectively on the Pol-InSAR-Island dataset. In addition to the dataset, results of supervised Wishart and Random Forest classifiers that achieve mean Intersection-over-Union scores between 24% and 67% are provided to serve as a baseline for future work. The dataset is provided via KITopenData: https://doi.org/10.35097/1700.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2667393223000182; http://dx.doi.org/10.1016/j.ophoto.2023.100047; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85180616889&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2667393223000182; https://dx.doi.org/10.1016/j.ophoto.2023.100047
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know