PlumX Metrics
Embed PlumX Metrics

Spectral Profile Partial Least-Squares (SP-PLS): Local multivariate pansharpening on spectral profiles

ISPRS Open Journal of Photogrammetry and Remote Sensing, ISSN: 2667-3932, Vol: 10, Page: 100049
2023
  • 4
    Citations
  • 0
    Usage
  • 5
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The compatibility of multispectral (MS) pansharpening algorithms with hyperspectral (HS) data is limited. With the recent development in HS satellites, there is a need for methods that can provide high spatial and spectral fidelity in both HS and MS scenarios. The present article presents a fast pansharpening method, based on the division of similar hyperspectral data in spectral subgroups using k-means clustering and Spectral Angle Mapper (SAM) profiling. Local Partial Least-Square (PLS) models are calibrated for each spectral subgroup against the respective pixels of the panchromatic image. The models are inverted to retrieve high-resolution pansharpened images. The method is tested against different methods that are able to handle both MS and HS pansharpening and assessed using reduced- and full-resolution evaluation methodologies. Based on a statistical multivariate approach, the proposed method is able to render uncertainty maps for spectral or spatial fidelity - functionality not reported in any other pansharpening study.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know