Relative intensity noise suppression in reflective SOAs
Optics Communications, ISSN: 0030-4018, Vol: 318, Page: 186-188
2014
- 13Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The reflective semiconductor optical amplifier (RSOA) capability to compress the relative intensity noise (RIN) is well-known and widely exploited in wavelength division multiplexing passive optical networks (WDM PON). While this feature has been previously analysed using SOA theory, in this paper we show that RSOAs present specific gain saturation properties. According to the injected power, three nonlinear operation regimes can be highlighted: the first one, where RIN is moderately compressed, the second one, where RIN maximum compression takes place, and the final one, where RIN grows again, this last regime being RSOA specific. We focus on a spectrum-sliced WDM PON classical topology, evaluating the impact of the injection process and filtering. RSOA injection and optical filtering have opposite effects on the RIN: by injection into the RSOA the RIN is reduced, after filtering RIN increases. We experimentally evaluate RIN both in the time and in the spectral domain. A simple numerical model mainly based on the correct reproduction of the component gain behaviour is exploited to verify experimental results. Through our experimental analysis and by simulations, we identify the correct injected power range to best take advantage of the RSOA features.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0030401813012054; http://dx.doi.org/10.1016/j.optcom.2013.12.057; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84893142019&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0030401813012054; https://api.elsevier.com/content/article/PII:S0030401813012054?httpAccept=text/xml; https://api.elsevier.com/content/article/PII:S0030401813012054?httpAccept=text/plain; https://dx.doi.org/10.1016/j.optcom.2013.12.057
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know