Long working distance high resolution reflective sample imaging via structured embedded speckle illumination
Optics and Lasers in Engineering, ISSN: 0143-8166, Vol: 134, Page: 106296
2020
- 4Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Imaging beyond the diffraction limit at longer working distances using enhanced microscopic configurations has always been a challenge for biological and engineering samples. Even though multiple techniques have been widely used for sub-diffraction limit resolution imaging, the achievable resolution was relying on the use of objective lenses with a high numerical aperture (NA). In the case of engineering samples, in addition to sustaining higher resolutions at large working distances, improving the signal-to-noise ratio (SNR) is also critical. In this context, we propose and demonstrate a concept for high-resolution imaging at large working distances, termed as structured illumination embedded speckle microscopy. An imaging resolution of ~ 310 ± 5 nm was achieved with a microscope objective (0.55 NA; 50X) having 11 mm long working distance using a Siemen's star as the test sample. The demonstrated microscopy is therefore envisaged for engineering applications that demands high-resolution, high SNR imaging at long working distances.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0143816619316288; http://dx.doi.org/10.1016/j.optlaseng.2020.106296; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85088026446&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0143816619316288; https://dx.doi.org/10.1016/j.optlaseng.2020.106296
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know