Structure and optical properties of Er 3+ doped ZnSe nanoparticles
Optical Materials, ISSN: 0925-3467, Vol: 157, Page: 116339
2024
- 1Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
Article Description
ZnSe: x %Er 3+ (0 ≤ x ≤ 1.8) thin films were deposited on the glass substrates using a photo-assisted chemical bath deposition method. The X-ray diffraction investigation revealed that the samples exhibited a hexagonal crystalline structure. The undoped ZnSe had a crystallite size of 21 nm, which decreased to 4 nm as the concentration of Er 3+ increased. The Scanning electron microscopy images showed that the shape of the particles changed from nanoflakes to glass-like particles after the introduction of Er 3+. The expected elemental composition was determined using energy-dispersive spectroscopy. The ultraviolet–visible spectroscopy analysis revealed that increasing the concentration of Er 3+ modified the band gap energy within the range of 2.75–4.09 eV. The photoluminescence investigation revealed two distinguishable emission peaks at the energy of 1.79 and 2.34 eV when stimulated with an energy of 5.68 eV. These emission peaks were attributed to the presence of impurities in the host material. The Commission Internationale de l’Eclairage revealed that increasing Er 3+ concentration shift the yellow emission from the host towards the light blue region. Incorporating Er³⁺ dopant into the ZnSe lattice significantly alters the structure and optical properties.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know