Improved mineral prospectivity mapping using graph neural networks
Ore Geology Reviews, ISSN: 0169-1368, Vol: 172, Page: 106215
2024
- 3Citations
- 12Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Research Conducted at University of Oxford Has Provided New Information about Ore Geology (Improved Mineral Prospectivity Mapping Using Graph Neural Networks)
2024 OCT 09 (NewsRx) -- By a News Reporter-Staff News Editor at Mining & Minerals Daily -- New research on Geology - Ore Geology is
Review Description
Prospectivity analysis is an important part of the exploration information system (EIS) and mineral prospectivity mapping (MPM) is a widely used technique for prospectivity analysis. Despite MPM studies employing various machine learning (ML) algorithms for various purposes, MPM is still considered insufficient to capture the complexity of many important ore-forming geological processes. One potential issue concerns the difficulty with which conventional application of ML algorithms can learn from relational information. For instance, the conventional application of ML algorithms to tabular data for mineral exploration does not effectively consider spatial relations across or between geological terranes, because point data are treated as independent entities that do not influence their neighbor’s characteristics. Here, we demonstrate how re-designing exploration data into a graph format that focuses on spatial relationships can increase the effectiveness of mineral prospectivity mapping (MPM). We demonstrate that the use of graph deep learning can be beneficial when utilizing categorical and numerical exploration data. This approach was applied to three different commodities (copper, iron, and tin) in the southern United Kingdom in order to compare the effectiveness of the graph neural network (GNN) method with conventional ML techniques. We show that graph-based ML that utilizes immediate neighbor relationships in the training process significantly improves performance in three key metrics when compared to tabular data, particularly so when trained with a dataset where there are more barren (non-occurrence) data points than mineralized (occurrence) ones. To produce the most useful prospectivity maps, we recommend training a GNN algorithm by using an imbalanced training dataset comprising more barren data than mineralized data. We expect that further testing of the GNN method will lead to optimization of the supervised ML techniques used in MPM and EIS to prospect for key metal commodities in regions with incomplete geological data.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know