OF-WFBP: A near-optimal communication mechanism for tensor fusion in distributed deep learning
Parallel Computing, ISSN: 0167-8191, Vol: 118, Page: 103053
2023
- 3Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The communication bottleneck has severely restricted the scalability of distributed deep learning. Tensor fusion improves the scalability of data parallelism by overlapping computation and communication tasks. However, existing tensor fusion schemes only result in suboptimal training performance. In this paper, we propose an efficient communication mechanism (OF-WFBP) to find the optimal tensor fusion scheme for synchronous data parallelism. We present the mathematical model of OF-WFBP and prove it is an NP-hard problem. We mathematically solve the mathematical model of OF-WFBP in two cases. We propose an improved sparrow search algorithm (GradSSA) to find the near-optimal tensor fusion scheme efficiently in other cases. Experimental results on two different GPU clusters show that OF-WFBP achieves up to 1.43x speedup compared to the state-of-the-art tensor fusion mechanisms.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0167819123000595; http://dx.doi.org/10.1016/j.parco.2023.103053; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85177976455&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0167819123000595; https://dx.doi.org/10.1016/j.parco.2023.103053
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know