PlumX Metrics
Embed PlumX Metrics

Unsupervised ensemble learning for genome sequencing

Pattern Recognition, ISSN: 0031-3203, Vol: 129, Page: 108721
2022
  • 2
    Citations
  • 0
    Usage
  • 5
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Unsupervised ensemble learning refers to methods devised for a particular task that combine data provided by decision learners taking into account their reliability, which is usually inferred from the data. Here, the variant calling step of the next generation sequencing technologies is formulated as an unsupervised ensemble classification problem. A variant calling algorithm based on the expectation-maximization algorithm is further proposed that estimates the maximum-a-posteriori decision among a number of classes larger than the number of different labels provided by the learners. Experimental results with real human DNA sequencing data show that the proposed algorithm is competitive compared to state-of-the-art variant callers as GATK, HTSLIB, and Platypus.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know