AEDNet: Adaptive Edge-Deleting Network For Subgraph Matching
Pattern Recognition, ISSN: 0031-3203, Vol: 133, Page: 109033
2023
- 12Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Subgraph matching is to find all subgraphs in a data graph that are isomorphic to an existing query graph. Subgraph matching is an NP-hard problem, yet has found its applications in many areas. Many learning-based methods have been proposed for graph matching, whereas few have been designed for subgraph matching. The subgraph matching problem is generally more challenging, mainly due to the different sizes between the two graphs, resulting in considerable large space of solutions. Also the extra edges existing in the data graph connecting to the matched nodes may lead to two matched nodes of two graphs having different adjacency structures and often being identified as distinct objects. Due to the extra edges, the existing learning based methods often fail to generate sufficiently similar node-level embeddings for matched nodes. This study proposes a novel Adaptive Edge-Deleting Network (AEDNet) for subgraph matching. The proposed method is trained in an end-to-end fashion. In AEDNet, a novel sample-wise adaptive edge-deleting mechanism removes extra edges to ensure consistency of adjacency structure of matched nodes, while a unidirectional cross-propagation mechanism ensures consistency of features of matched nodes. We applied the proposed method on six datasets with graph sizes varying from 20 to 2300. Our evaluations on six open datasets demonstrate that the proposed AEDNet outperforms six state-of-the-arts and is much faster than the exact methods on large graphs.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0031320322005131; http://dx.doi.org/10.1016/j.patcog.2022.109033; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85138071491&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0031320322005131; https://dx.doi.org/10.1016/j.patcog.2022.109033
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know