Two-stage fine-grained image classification model based on multi-granularity feature fusion
Pattern Recognition, ISSN: 0031-3203, Vol: 146, Page: 110042
2024
- 8Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Fine-grained visual classification (FGVC) is a difficult task due to the challenges of discriminative feature learning. Most existing methods directly use the final output of the network which always contains the global feature with high-level semantic information. However, the differences between fine-grained images are reflected in subtle local regions which often appear in the front of the network. When the texture of the background and object are similar or the proportion of the background is too large, the prediction will be greatly affected. In order to solve the above problems, this paper proposes multi-granularity feature fusion module (MGFF) and two-stage classification based on Vision-Transformer (ViT). The former comprehensively represents images by fusing features of different granularities, thus avoiding the limitations of single-scale features. The latter leverages the ViT model to separate the object from the background at a very small cost, thereby improving the accuracy of the prediction. We conduct comprehensive experiments and achieves the best performance in two fine-grained tasks on CUB-200-2011 and NA-Birds.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0031320323007392; http://dx.doi.org/10.1016/j.patcog.2023.110042; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85174442880&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0031320323007392; https://dx.doi.org/10.1016/j.patcog.2023.110042
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know