Universal machine learning framework for defect predictions in zinc blende semiconductors
Patterns, ISSN: 2666-3899, Vol: 3, Issue: 3, Page: 100450
2022
- 29Citations
- 41Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations29
- Citation Indexes29
- 29
- CrossRef16
- Captures41
- Readers41
- 41
Article Description
We develop a framework powered by machine learning (ML) and high-throughput density functional theory (DFT) computations for the prediction and screening of functional impurities in groups IV, III–V, and II–VI zinc blende semiconductors. Elements spanning the length and breadth of the periodic table are considered as impurity atoms at the cation, anion, or interstitial sites in supercells of 34 candidate semiconductors, leading to a chemical space of approximately 12,000 points, 10% of which are used to generate a DFT dataset of charge dependent defect formation energies. Descriptors based on tabulated elemental properties, defect coordination environment, and relevant semiconductor properties are used to train ML regression models for the DFT computed neutral state formation energies and charge transition levels of impurities. Optimized kernel ridge, Gaussian process, random forest, and neural network regression models are applied to screen impurities with lower formation energy than dominant native defects in all compounds.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S266638992200023X; http://dx.doi.org/10.1016/j.patter.2022.100450; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85125621186&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35510195; https://linkinghub.elsevier.com/retrieve/pii/S266638992200023X; https://dx.doi.org/10.1016/j.patter.2022.100450
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know