Toward a systems-level view of mitotic checkpoints
Progress in Biophysics and Molecular Biology, ISSN: 0079-6107, Vol: 117, Issue: 2, Page: 217-224
2015
- 21Citations
- 56Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations21
- Citation Indexes21
- 21
- CrossRef17
- Captures56
- Readers56
- 56
Review Description
Reproduction and natural selection are the key elements of life. In order to reproduce, the genetic material must be doubled, separated and placed into two new daughter cells, each containing a complete set of chromosomes and organelles. In mitosis, transition from one process to the next is guided by intricate surveillance mechanisms, known as the mitotic checkpoints. Dis-regulation of cell division through checkpoint malfunction can lead to developmental defects and contribute to the development or progression of tumors. This review approaches two important mitotic checkpoints, the spindle assembly checkpoint (SAC) and the spindle position checkpoint (SPOC). The highly conserved spindle assembly checkpoint (SAC) controls the onset of anaphase by preventing premature segregation of the sister chromatids of the duplicated genome, to the spindle poles. In contrast, the spindle position checkpoint (SPOC), in the budding yeast Saccharomyces cerevisiae, ensures that during asymmetric cell division mitotic exit does not occur until the spindle is properly aligned with the cell polarity axis. Although there are no known homologs, there is indication that functionally similar checkpoints exist also in animal cells. This review can be regarded as an “executable model”, which could be easily translated into various quantitative concrete models like Petri nets, ODEs, PDEs, or stochastic particle simulations. It can also function as a base for developing quantitative models explaining the interplay of the various components and proteins controlling mitosis.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0079610715000152; http://dx.doi.org/10.1016/j.pbiomolbio.2015.02.005; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84938964278&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/25722206; https://linkinghub.elsevier.com/retrieve/pii/S0079610715000152; https://dx.doi.org/10.1016/j.pbiomolbio.2015.02.005
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know