A process-based impact of tropical cyclone and hurricane on surface water-groundwater interaction and contaminant mobilization of coastal aquifers
Progress in Disaster Science, ISSN: 2590-0617, Vol: 22, Page: 100318
2024
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures24
- Readers24
- 24
Review Description
Coastal aquifers are hydraulically connected to the sea and a storm (cyclone/hurricane) can disrupt the surface water-groundwater (SW-GW) interaction process which is largely unexplored. Thus, this study aims to explore the impact of storm surges (both positive and negative) on coastal aquifers, focusing on pollutant mobilization, groundwater level (GWL) fluctuations, and solute concentration (Salinity, Cl - ) and subsequent re-stabilization based on pre-existing studies from the coast of USA and India through a systematic review process. The outcome of this study revealed that there is a positive relationship between cyclonic speed, rainfall, storm surge height and GWL in lithologically conductive aquifers. Positive surge raises GWL, salinity and transportation of surface contaminants into groundwater while negative surge induces fall in salinity, and accelerates submarine groundwater discharge and exports contaminants/nutrients to sea. The restabilization of SW-GW interaction dynamics is case dependent, which takes a week to month to years, and is dependent on local hydrogeology and intensity of storm. So, the study recommends prioritizing to safeguard the coastal groundwater otherwise increasing storms will lead to questions on freshwater sustainability and coastal ecosystems in present climate change scenario.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2590061724000085; http://dx.doi.org/10.1016/j.pdisas.2024.100318; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85186980036&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2590061724000085; https://dx.doi.org/10.1016/j.pdisas.2024.100318
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know