Predicting antimicrobial peptides from eukaryotic genomes: In silico strategies to develop antibiotics
Peptides, ISSN: 0196-9781, Vol: 37, Issue: 2, Page: 301-308
2012
- 38Citations
- 143Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations38
- Citation Indexes37
- 37
- CrossRef24
- Patent Family Citations1
- Patent Families1
- Captures143
- Readers143
- 143
Article Description
A remarkable and intriguing challenge for the modern medicine consists in the development of alternative therapies to avoid the problem of microbial resistance. The cationic antimicrobial peptides present a promise to be used to develop more efficient drugs applied to human health. The in silico analysis of genomic databases is a strategy utilized to predict peptides of therapeutic interest. Once the main antimicrobial peptides’ physical–chemical properties are already known, the correlation of those features to search on these databases is a tool to shorten identifying new antibiotics. This study reports the identification of antimicrobial peptides by theoretical analyses by scanning the Paracoccidioides brasiliensis transcriptome and the human genome databases. The identified sequences were synthesized and investigated for hemocompatibility and also antimicrobial activity. Two peptides presented antifungal activity against Candida albicans. Furthermore, three peptides exhibited antibacterial effects against Staphylococcus aureus and Escherichia coli ; finally one of them presented high potential to kill both pathogens with superior activity in comparison to chloramphenicol. None of them showed toxicity to mammalian cells. In silico structural analyses were performed in order to better understand function–structure relation, clearly demonstrating the necessity of cationic peptide surfaces and the exposition of hydrophobic amino acid residues. In summary, our results suggest that the use of computational programs in order to identify and evaluate antimicrobial peptides from genomic databases is a remarkable tool that could be used to abbreviate the search of peptides with biotechnological potential from natural resources.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0196978112003221; http://dx.doi.org/10.1016/j.peptides.2012.07.021; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84865411391&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/22884922; https://linkinghub.elsevier.com/retrieve/pii/S0196978112003221; https://dx.doi.org/10.1016/j.peptides.2012.07.021
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know