LuQi formula attenuates Cardiomyocyte ferroptosis via activating Nrf2/GPX4 signaling axis in heart failure
Phytomedicine, ISSN: 0944-7113, Vol: 125, Page: 155357
2024
- 9Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- Captures2
- Readers2
Article Description
The terminal stage of all cardiovascular diseases typically culminates in heart failure (HF), with no effective intervention available to halt its progression. LuQi formula (LQF) has been employed in clinical for numerous years to significantly ameliorate cardiac function in HF patients. Nevertheless, the underlying mechanism of LQF's efficacy remains inadequately comprehended. Cardiomyocyte ferroptosis has served as a pathogenic mechanism in HF. The goal of the current experiment was to ascertain whether LQF ameliorates HF by preventing cardiomyocyte ferroptosis and to elucidate the intrinsic mechanism involved. This research objective is to investigate the impact and underlying mechanism of LQF attenuating cardiomyocyte ferroptosis in heart failure. Transverse aortic constriction (TAC) was performed to construct the HF mouse model. Neonatal rat cardiomyocytes (NRCMs) were subjected to in vitro experiments. High-performance liquid chromatography (HPLC) identified the bioactive compounds in LQF. Transcriptomic and quantitative proteomic analyses revealed the potential targets of LQF anti-HF. Specifically, histological staining evaluated cardiac hypertrophy and fibrosis. Transmission electron microscopy (TEM) observed mitochondrial morphology. The content of Fe 2+, ROS, MDA, GSH, and GSSH was detected using kits. Molecular docking evaluated the binding activities between essential active ingredients of LQF and critical proteins of cardiomyocyte ferroptosis. Mechanistically, the expression levels of Nrf2, Keap1, HO-1, SLC7A11, and GPX4 were evaluated using qPCR, Western blot (WB), or immunohistochemical staining. The primary nine active ingredients in LQF were detected. Transcriptomic and proteomic analyses demonstrated that LQF may ameliorate HF by preventing cardiomyocyte ferroptosis. Histomorphometric analyses revealed that LQF attenuates myocardial hypertrophy and fibrosis. TEM revealed that LQF diminished mitochondrial shrinkage and increased membrane density in myocardial tissue. Additionally, LQF diminished reactive oxygen species (ROS) generation in cardiomyocytes and suppressed cardiomyocyte ferroptosis. Furthermore, the molecular docking technique revealed that the primary active ingredients of LQF had suitable binding activities with Nrf2, GPX4, and SLC7A11. Western analysis further verified that LQF activated the Nrf2/GPX4 signaling axis. decreased SLC7A11 and HO-1 expression. These results demonstrated that LQF prevents cardiomyocyte ferroptosis via activating Nrf2/GPX4 signaling axis and suppressing SLC7A11 and HO-1 expression. Concurrently, it contributed to elucidating the intrinsic mechanism of LQF and provided a scientific rationale for its development as a novel cardiovascular therapeutic drug.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0944711324000229; http://dx.doi.org/10.1016/j.phymed.2024.155357; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85184791994&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38295662; https://linkinghub.elsevier.com/retrieve/pii/S0944711324000229; https://dx.doi.org/10.1016/j.phymed.2024.155357
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know