Visibility to discern local from nonlocal dynamic processes
Physica A: Statistical Mechanics and its Applications, ISSN: 0378-4371, Vol: 471, Page: 718-723
2017
- 3Citations
- 15Captures
- 3Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We compare using visibility the usual Kardar–Parisi–Zhang (KPZ) universality class and a fractional Edward–Wilkinson (EW f ) equation with correlated noise, which share the same kinetic roughening exponents. The KPZ universality class is described by an equation in terms of the usual derivatives, uncorrelated noise and therefore is intrinsically local. The second model includes fractional powers of the Laplace operator and correlated noise, both of which are nonlocal. From their scaling properties, one could be tempted to conclude that both dynamics belong to the same universality class, specifically, to the KPZ universality class. However, this is a wrong conclusion that calls the attention against the indiscriminate application of this approach in real systems without taking into consideration basic physical assumptions (e.g. locality). These examples reveal the necessity of finding new algorithms for detecting characteristics that remain unnoticed to classical scaling analysis, where only the two first moments of the interface distribution (mean and variance) are used to classify the dynamics. We show that visibility and, in particular, the kinetic roughening exponents of the visibility interface, are able to distinguish between these two dynamics which are confused by standard techniques.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0378437116310585; http://dx.doi.org/10.1016/j.physa.2016.12.078; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85008339646&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0378437116310585; https://dx.doi.org/10.1016/j.physa.2016.12.078
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know