Hyperspectral redundancy detection and modeling with local Hurst exponent
Physica A: Statistical Mechanics and its Applications, ISSN: 0378-4371, Vol: 592, Page: 126830
2022
- 8Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Hyperspectral reflectance means a curve in a range of certain wavelength, the complex dynamic structure of which reflects the rich information of an object at different bands, which is often used as various modeling inputs. However, the potential redundancy associating with the information mentioned above will have serious impacts for the accurate extraction of spectral features. Thus, detecting information redundancy is a critical processing for the spectral analysis. By using the local detrended fluctuation analysis, we propose a new method detecting the redundant bands, which focuses on the spectral auto-correlation represented by local Hurst exponent in the moving windows, and the redundant bands can be defined through comparing the auto-correlation between two adjacent windows. Finally, with the fractal feature of the removing redundant bands as the augment, the rapeseed oleic acid prediction model based on the random decision forest is constructed to test our method. For the purpose of comparing, the same feature as the original spectrum is also employed as the augment for the model. The testing result shows that the feature obtained by removing the redundant bands has better performance over the feature of the original spectrum.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0378437121009924; http://dx.doi.org/10.1016/j.physa.2021.126830; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85122627093&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0378437121009924; https://dx.doi.org/10.1016/j.physa.2021.126830
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know