PlumX Metrics
Embed PlumX Metrics

Kinetic theory of collisionless relaxation for systems with long-range interactions

Physica A: Statistical Mechanics and its Applications, ISSN: 0378-4371, Vol: 606, Page: 128089
2022
  • 15
    Citations
  • 0
    Usage
  • 3
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    15
    • Citation Indexes
      15
  • Captures
    3

Article Description

We develop the kinetic theory of collisionless relaxation for systems with long-range interactions in relation to the statistical theory of Lynden-Bell. We treat the multi-level case. We make the connection between the kinetic equation obtained from the quasilinear theory of the Vlasov equation and the relaxation equation obtained from a maximum entropy production principle. We propose a method to close the infinite hierarchy of kinetic equations for the phase level moments and obtain a kinetic equation for the coarse-grained distribution function in the form of a generalized Landau, Lenard–Balescu or Kramers equation associated with a generalized form of entropy (Chavanis, 2004). This allows us to go beyond the two-level case associated with a Fermi–Dirac-type entropy. We discuss the numerous analogies with two-dimensional turbulence. We also mention possible applications of the present formalism to fermionic and bosonic dark matter halos.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know