Intense laser field effects on the linear and nonlinear intersubband optical properties in a strained InGaN/GaN quantum well
Physica B: Condensed Matter, ISSN: 0921-4526, Vol: 452, Page: 131-135
2014
- 26Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this work, the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes of a strained InGaN/GaN quantum well are investigated numerically. In the effective-mass approximation, the electronic energy levels and the corresponding wave functions are calculated by taking into account the effects of spontaneous and piezoelectric polarization fields on the conduction band edge. Effects of intense laser field, In composition and the well width on the optical properties of the strained quantum well are studied. Results indicate that the laser field as well as the strain induced piezoelectric field considerably affects the confining potential of the quantum well. Results also show that the resonant peaks experience a red-shift (blue-shift) with the increase in the laser field intensity and well width ( In composition).
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0921452614005353; http://dx.doi.org/10.1016/j.physb.2014.07.001; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84905040682&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0921452614005353; https://dx.doi.org/10.1016/j.physb.2014.07.001
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know