PlumX Metrics
Embed PlumX Metrics

Optimization of high temperature superconducting motor magnets with strong airgap flux density

Physica C: Superconductivity and its Applications, ISSN: 0921-4534, Vol: 624, Page: 1354574
2024
  • 1
    Citations
  • 0
    Usage
  • 8
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Review Description

This paper presents a design for five conventional superconducting magnet structures to meet the high magnetic load demand of superconducting motors while reducing the superconducting tapes consumption. A 45° highest efficiency line is proposed based on the graphical method, and the magnet structure is optimized by combining finite element and PSO algorithms. Additionally, a correlation function is established using the vertical magnetic field to estimate the critical current, describing the nonlinear relationship between the two. The optimization method can maintain the airgap flux density waveform before and after optimization, reduce tapes consumption and perpendicular field on the tapes, refine the field distribution, and improve the safety margin of superconducting coils. The magnet design scheme can be selected with low tape consumption or high safety margin according to actual demand. This research can be used to optimize the electromagnetic design of superconducting electric motors, as well as other superconducting magnet applications, such as superconducting magnetic bearings, nuclear magnetic resonance, and large-scale scientific installations for high-energy physics. The aim is to achieve the exhaustive use of superconducting tapes.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know