A microfluidic pumping mechanism driven by non-equilibrium osmotic effects
Physica D: Nonlinear Phenomena, ISSN: 0167-2789, Vol: 238, Issue: 14, Page: 1168-1179
2009
- 10Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A mechanism is presented which drives a fluid flow using two chemically reacting molecular species and osmotic effects. For concreteness the mechanism is discussed in the context of a tube which at each end has a capping membrane which is permeable to the fluid but impermeable to the two molecular species. The chemical reactions occur at sites embedded in the capping membrane. Labeling the two chemical species A and B, at one end the reactions split each molecule of species B into two molecules of species A. On the other end two molecules of species A are fused together to form a single molecule of species B. A mathematical model of the solute diffusion, fluid flow, and osmotic effects is presented and used to describe the non-equilibrium steady-state flow rate generated. Theoretical and computational results are given for how the flow rate depends on the relative diffusivities of the solute species and the geometry of the system. An interesting feature of the pump is that for the same fixed chemical reactions at the tube ends, fluid flows can be driven in either direction through the tube, with the direction depending on the relative diffusivities of the solute species. The theoretical results are compared with three-dimensional numerical simulations of the pump.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S016727890900102X; http://dx.doi.org/10.1016/j.physd.2009.03.018; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=67349256376&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S016727890900102X; https://dx.doi.org/10.1016/j.physd.2009.03.018
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know