Shock mechanisms by ultrahigh laser accelerated plasma blocks in solid density targets for fusion
Physics Letters A, ISSN: 0375-9601, Vol: 377, Issue: 12, Page: 885-888
2013
- 41Citations
- 15Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Ignition of nuclear fusion flames in solid state density fuel following Chuʼs model of 1972 is evaluated using now available plasma blocks from ultrahigh acceleration with laser pulses of picosecond (ps) duration and power up to and beyond petawatt (PW). A new numerical approach is reported where genuine two-fluid hydrodynamics is used in order to study the shock mechanism of the generated fusion flame, its propagation velocities above 1000 km/s, and fusion efficiencies for deuterium–tritium needing an energy flux of 108 J/cm2. The results of the built-up of the shock process are reported showing a basic difference between the ps and nanosecond (ns) properties.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0375960113001199; http://dx.doi.org/10.1016/j.physleta.2013.01.037; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84874295217&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0375960113001199; https://dx.doi.org/10.1016/j.physleta.2013.01.037
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know