Discrete time crystal phase of higher dimensional integrable models
Physics Letters A, ISSN: 0375-9601, Vol: 511, Page: 129552
2024
- 1Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper investigates the possibility of generating Floquet-time crystals in higher dimensions ( d≥2 ) through the time-periodic driving of integrable free-fermionic models. The realization leads to rigid time-crystal phases that are ideally resistant to thermalization and decoherence. By utilizing spin-orbit coupling, we are able to realize a robust time-crystal phase that can be detected using novel techniques. Moreover, we discuss the significance of studying the highly persistent subharmonic responses and their implementation in a Kitaev spin liquid, which contributes to our understanding of time translational symmetry breaking and its practical implications.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0375960124002469; http://dx.doi.org/10.1016/j.physleta.2024.129552; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85192251213&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0375960124002469; https://dx.doi.org/10.1016/j.physleta.2024.129552
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know