Effective speed of gravitational waves
Physics Letters B, ISSN: 0370-2693, Vol: 851, Page: 138572
2024
- 5Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
Article Description
We derive an effective equation and action for the propagation of gravitational waves (GW), encoding the effects of interaction and self-interaction in a time, frequency and polarization dependent effective speed. In terms of an appropriately defined effective metric, the effective action takes the form a massless Klein-Gordon action. This effective approach predicts that for theories with matter coupled to the Einstein frame metric the ratio between gravitational and electromagnetic (EM) luminosity distance depends on the effective speed, while for Jordan frame matter coupling it depends on the effective Planck mass. We discuss how the frequency and polarization dependence of the GW-EM distance ratio provides a new test of general relativity and its modifications, and more in general of the interaction of GWs with other fields.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0370269324001308; http://dx.doi.org/10.1016/j.physletb.2024.138572; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85188452488&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0370269324001308; https://dx.doi.org/10.1016/j.physletb.2024.138572
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know