Chirality as generalized spin–orbit interaction in spintronics
Physics Reports, ISSN: 0370-1573, Vol: 1009, Page: 1-115
2023
- 59Citations
- 83Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Chirality or handedness distinguishes an object from its mirror images, such as the spread thumb, index finger, and middle finger of the right and left hand. In mathematics, it is described by the outer product of three vectors that obey a right-hand vs. left-hand rule. The chirality of ground state magnetic textures defined by the vectors of magnetization, its gradient, and an electric field from broken inversion symmetry can be fixed by a strong relativistic spin–orbit interaction. This review focuses on the chirality observed in the excited states of the magnetic order, dielectrics, and conductors that hold transverse spins when they are evanescent. Even without any relativistic effect, the transverse spin of the evanescent waves is locked to the momentum and the surface normal of their propagation plane. This chirality thereby acts as a generalized spin–orbit interaction, which leads to the discovery of various chiral interactions between magnetic, phononic, electronic, photonic, and plasmonic excitations in spintronics that mediate the excitation of quasiparticles into a single direction, leading to phenomena such as chiral spin and phonon pumping, chiral spin Seebeck, spin skin, magnonic trap, magnon Doppler, chiral magnon damping, and spin diode effects. Intriguing analogies with electric counterparts in the nano-optics and plasmonics exist. After a brief review of the concepts of chirality that characterize the ground state chiral magnetic textures and chirally coupled magnets in spintronics, we turn to the chiral phenomena of excited states. We present a unified electrodynamic picture for dynamical chirality in spintronics in terms of generalized spin–orbit interaction and compare it with that in nano-optics and plasmonics. Based on the general theory, we subsequently review the theoretical progress and experimental evidence of chiral interaction, as well as the near-field transfer of the transverse spins, between various excitations in magnetic, photonic, electronic and phononic nanostructures at GHz time scales. We provide a perspective for future research before concluding this article.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0370157323000108; http://dx.doi.org/10.1016/j.physrep.2023.01.002; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85147209578&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0370157323000108; https://dx.doi.org/10.1016/j.physrep.2023.01.002
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know