Perspectives on the basic and applied aspects of crassulacean acid metabolism (CAM) research
Plant Science, ISSN: 0168-9452, Vol: 274, Page: 394-401
2018
- 18Citations
- 83Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations18
- Citation Indexes18
- 18
- CrossRef17
- Captures83
- Readers83
- 83
Review Description
Due to public concerns about the decreasing supply of blue water and increasing heat and drought stress on plant growth caused by urbanization, increasing human population and climate change, interest in crassulacean acid metabolism (CAM), a specialized type of photosynthesis enhancing water-use efficiency (WUE) and drought tolerance, has increased markedly. Significant progress has been achieved in both basic and applied research in CAM plants since the beginning of this century. Here we provide a brief overview of the current status of CAM research, and discuss future needs and opportunities in a wide range of areas including systems biology, synthetic biology, and utilization of CAM crops for human benefit, with a focus on the following aspects: 1) application of genome-editing technology and high-throughput phenotyping to functional genomics research in model CAM species and genetic improvement of CAM crops, 2) challenges for multi-scale metabolic modeling of CAM systems, 3) opportunities and new strategies for CAM pathway engineering to enhance WUE and drought tolerance in C 3 (and C 4 ) photosynthesis crops, 4) potential of CAM species as resources for food, feed, natural products, pharmaceuticals and biofuels, and 5) development of CAM crops for ecological and aesthetic benefits.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0168945217311810; http://dx.doi.org/10.1016/j.plantsci.2018.06.012; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85049006655&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/30080627; https://linkinghub.elsevier.com/retrieve/pii/S0168945217311810; https://dx.doi.org/10.1016/j.plantsci.2018.06.012
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know