The combined effects of copper and zinc on Arabidopsis involve differential regulation of chlorophyll synthesis and photosystem function
Plant Physiology and Biochemistry, ISSN: 0981-9428, Vol: 216, Page: 109160
2024
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
Copper (Cu) and zinc (Zn) are both oxidation-reducing metal elements that are necessary for plant growth, and their effect often depends on their concentration. However, there are few studies that have investigated how plants are stressed and affected when the two ions are present simultaneously, especially when one ion is beneficial due to a low concentration and the other is detrimental due to a high concentration. To address this question, we treated Arabidopsis plants with either high or/and low concentrations of the two ions and investigated their mutual effects and the underlying molecular mechanism, focusing on photosynthetic function. The results showed that the photosynthetic pigment content and the performance of photosynthetic systems were most affected when both metal ions were present at detrimental concentrations (60 μM Cu for Cu 60 and 350 μM Zn for Zn 350 ). These include the effective openness of the photoreaction center, the electron transport rate and efficiency of photosystem II (PSII), the NPQ-dependent energy dissipation and the activity of photosystem I (PSI). However, when the harmful concentration of one of the two metals is combined with the beneficial concentration of the other metal (Cu 5 +Zn 350 or Zn 50 +Cu 60 ), these photosynthetic indicators are compensated to different degrees but the negative effects of copper ions at high dose are more difficult to eliminate than zinc ions. These results were also confirmed by gene expression analysis, which provides a clue to understanding the interaction between heavy metal ions, reducing metal toxicity and improving the tolerance of plants to heavy metals in practice.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0981942824008283; http://dx.doi.org/10.1016/j.plaphy.2024.109160; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85205300780&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39357197; https://linkinghub.elsevier.com/retrieve/pii/S0981942824008283
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know