Plasmalogens regulate the AKT-ULK1 signaling pathway to control the position of the axon initial segment
Progress in Neurobiology, ISSN: 0301-0082, Vol: 205, Page: 102123
2021
- 14Citations
- 14Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations14
- Citation Indexes14
- 14
- CrossRef5
- Captures14
- Readers14
- 14
Article Description
The axon initial segment (AIS) is a specialized region in neurons that encompasses two essential functions, the generation of action potentials and the regulation of the axodendritic polarity. The mechanism controlling the position of the axon initial segment to allow plasticity and regulation of neuron excitability is unclear. Here we demonstrate that plasmalogens, the most abundant ether-phospholipid, are essential for the homeostatic positioning of the AIS. Plasmalogen deficiency is a hallmark of Rhizomelic Chondrodysplasia Punctata (RCDP) and Zellweger spectrum disorders, but Alzheimer’s and Parkinson’s disease, are also characterized by plasmalogen defects. Neurons lacking plasmalogens displaced the AIS to more distal positions and were characterized by reduced excitability. Treatment with a short-chain alkyl glycerol was able to rescue AIS positioning. Plasmalogen deficiency impaired AKT activation, and we show that inhibition of AKT phosphorylation at Ser473 and Thr308 is sufficient to induce a distal relocation of the AIS. Pathway analysis revealed that downstream of AKT, overtly active ULK1 mediates AIS repositioning. Rescuing the impaired AKT signaling pathway was able to normalize AIS position independently of the biochemical defect. These results unveil a previously unknown mechanism that couples the phospholipid composition of the neuronal membrane to the positional assembly of the AIS.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0301008221001374; http://dx.doi.org/10.1016/j.pneurobio.2021.102123; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85111800238&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34302896; https://linkinghub.elsevier.com/retrieve/pii/S0301008221001374; https://dx.doi.org/10.1016/j.pneurobio.2021.102123
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know