A green organic-inorganic PAbz@ZIF hybrid towards efficient flame-retardant and smoke-suppressive epoxy coatings with enhanced mechanical properties
Polymer Degradation and Stability, ISSN: 0141-3910, Vol: 217, Page: 110534
2023
- 19Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Developing sustainable bio-based flame retardants for flammable polymers has been a research trend. However, applying bio-based flame retardants to confer excellent flame retardancy, smoke suppression, and mechanical properties to polymers remains a formidable challenge. Herein, a green organic-inorganic hybrid (PAbz@ZIF) was readily prepared through a simple neutralization reaction and in-situ generation method and applied to fabricate high-performance flame-retardant epoxy coatings (EP-PAbz@ZIF). It has been shown that PAbz@ZIF hybrids can enhance the curing activity of epoxy coatings in addition to their excellent dispersibility and interfacial compatibility. In addition, the epoxy coating containing 5.0 wt% PAbz@ZIF (EP-5%PAbz@ZIF) exhibits a higher char yield (from 25.1 wt% to 31.5 wt%) in comparison to pristine epoxy resin (EP). More importantly, the PAbz@ZIF-based epoxy coatings show more efficient flame retardancy and smoke suppression compared to pristine EP. For instance, the 5.0 wt% PAbz@ZIF enables EP-5%PAbz@ZIF to obtain a satisfactory UL-94 rating of V0. Meanwhile, the peak heat release rate, total smoke production, peak CO production rate, and peak CO 2 production rate of EP-5%PAbz@ZIF are remarkably decreased by 48.6%, 20.5%, 38.6%, and 56.7%, respectively. Furthermore, EP-5%PAbz@ZIF exhibits enhanced heat insulation performance, flexural strength, and impact strength. This work offers a feasible idea for designing green organic-inorganic PAbz@ZIF hybrids and fabricating high-performance flame-retardant epoxy coatings.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0141391023002847; http://dx.doi.org/10.1016/j.polymdegradstab.2023.110534; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85170408784&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0141391023002847; https://dx.doi.org/10.1016/j.polymdegradstab.2023.110534
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know