Combining fast-scan chip-calorimeter with molecular simulations to investigate superheating behaviors of lamellar polymer crystals
Polymer, ISSN: 0032-3861, Vol: 55, Issue: 16, Page: 4307-4312
2014
- 42Citations
- 16Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We studied the power-law heating-rate dependence of superheating for the melting of alpha- and beta-crystals of isotactic polypropylene by means of chip-calorimeter, and expanded our parallel observation to higher heating rates by means of molecular simulations. We observed that, at low heating rates, the melting of lamellar crystals after thickened via melting-recrystallization exhibits no power-law-dependent superheating; at medium heating rates, the melting of crystals after thickened via chain-sliding diffusion exhibits the power-law-dependent superheating with the power indexes sensitive to chain mobility in the crystals; while at high heating rates, the zero-entropy-production melting of crystals without further thickening maintains the power-law-dependent superheating but with the power indexes uniform at an upper-limit 0.375. We attributed the index 0.375 to a result combining local intramolecular nucleation and global roughening growth at the lateral surface of lamellar crystals, which dominate the kinetics of crystal growth and melting of polymer crystals at high temperatures.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0032386114005424; http://dx.doi.org/10.1016/j.polymer.2014.06.048; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84905486072&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0032386114005424; https://dx.doi.org/10.1016/j.polymer.2014.06.048
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know