Thermodynamic phase analysis of acrylic polymer/hindered phenol hybrids: Effects of hydrogen bonding strength
Polymer, ISSN: 0032-3861, Vol: 153, Page: 317-324
2018
- 19Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Hindered phenols have been reported effective to remarkably enhance the damping property of acrylic polymers. In this work, the long–term stability of these novel damping materials were investigated on the basis of thermodynamic phase diagrams. The Flory–Huggins interaction parameter χ between different small molecules and poly(butyl methacrylate) (PBMA) were determined through the melting point depression method proposed by Nishi and Wang. The calculated phase diagram curves agreed well with small-angle light scattering, wide-angle X-ray diffraction, and optical transparency measurements. χ gradually decreased to a negative value as temperature increased and the phase diagrams exhbited an upper critical solution temperature-type spinodal curve. The mixtures with the small-molecule loading of less than 28 vol% were found miscibile at temperatures near the glass-transition temperature. Increasing the intermolecular hydrogen bonding strength between the phenol and carbonyl groups of PBMA could effectively reduce the χ value. Meanwhile, increasing the steric hindrance of the phenolic hydroxyl groups and the sizes of small molecules may sufficiently weaken intramolecular hydrogen bonding interactions. These effects suppress the self-aggregation of small molecules and improve the long-term stability of the damping materials.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0032386118307493; http://dx.doi.org/10.1016/j.polymer.2018.08.037; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85053748883&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0032386118307493; https://dx.doi.org/10.1016/j.polymer.2018.08.037
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know