Micronization as a solution for enhancing the thermal insulation of nanocellular poly(methyl-methacrylate) (PMMA)
Polymer, ISSN: 0032-3861, Vol: 261, Page: 125397
2022
- 5Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This work shows a route to reduce the thermal conductivity of nanocellular poly(methyl-methacrylate) (PMMA). This approach is based on micronizing to replace the continuous solid phase by a discontinuous one. PMMA powders with densities of 147–195 kg/m 3, formed by particles of 100 μm with nanometric cells inside them, are produced by milling. Micronization allows increasing the overall porosity maintaining the cell size. Results prove that after milling it is possible to obtain open cell nanoporous PMMA powders with thermal conductivity below that of the bulk materials (15% reduction). The reduction is not only due to a density decrease, but a result of the new structure of the powder material. The discontinuity of the solid phase and the increase in radiation extinction are the key factors allowing this improvement. This route is confirmed as a promising alternative to enhance the performance of nanocellular polymers.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0032386122008850; http://dx.doi.org/10.1016/j.polymer.2022.125397; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85139844030&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0032386122008850; https://dx.doi.org/10.1016/j.polymer.2022.125397
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know