Understanding the shape-memory mechanism of thermoplastic polyurethane by investigating the phase-separated morphology: A dissipative particle dynamics study
Polymer Testing, ISSN: 0142-9418, Vol: 137, Page: 108531
2024
- 2Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Shape-memory polyurethanes (SMPUs) are promising materials that change shape in response to external heat. These polymers have a dual-segment structure: a hard segment for netpoint and a soft segment for molecular switch. Understanding the molecular behavior of each segment and microphase-separated morphology is crucial for comprehending the shape-memory mechanism. This study aimed to understand the shape-memory behavior by observing the phase separation of SMPU using mesoscale models based on dissipative particle dynamics (DPD) simulations. The SMPU copolymer was modeled using 4,4′-diphenylmethane diisocyanate (MDI, hard segment) and poly(ethylene oxide) (PEO, soft segment). By calculating segment solubility and repulsion parameters, we found that the hard-segment domain changes from isolated form to a lamellar and interconnected structure and eventually to a continuous form as its content increases. Combining these insights with shape-memory performance models can enhance our understanding of better SMPU design and contribute significantly to the optimization of smart stimuli-responsive materials.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0142941824002083; http://dx.doi.org/10.1016/j.polymertesting.2024.108531; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85199760781&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0142941824002083; https://dx.doi.org/10.1016/j.polymertesting.2024.108531
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know