Recent advances and future research in ecological stoichiometry
Perspectives in Plant Ecology, Evolution and Systematics, ISSN: 1433-8319, Vol: 50, Page: 125611
2021
- 91Citations
- 103Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Studies on ecological stoichiometry (ES) have increased rapidly in number in recent years. Continuous exploration of classical concepts such as the growth-rate hypothesis (GRH),), which is based on the relationship between the nitrogen:phosphorus (N:P) ratio of organisms and their growth-rate capacity, has identified new patterns and uncertainties, particularly with regard to terrestrial plants and microbial systems. Another concept that has proven to be helpful is the Redfield ratio, which postulates a consistent carbon:nitrogen:phosphorus (C:N:P) molar ratio of 100:16:1 in marine phytoplankton and open oceanic waters, and this ratio is related to the protein:rRNA ratio associated with protein synthesis. ES studies in all types of ecosystems have demonstrated that shifts in the elemental composition of water, soil, organisms, and communities are linked to the spatiotemporal structure and function of the ecosystem communities. The recent trend of also considering additional bio-elements such as potassium (K), magnesium (Mg) and calcium (Ca), has improved our understanding of how resource availability in complex ecosystems affects basic organism functions such as growth, stress responses, and defensive mechanisms. The biogeochemical or bio-elemental niche hypothesis is a novel tool that uses the concentrations and ratios of several bio-elements to define species niches and to scale up processes at the community and ecosystem levels. Global environmental changes, such as an increase in atmospheric CO 2, drought, N deposition, and species invasion, change the elemental composition of the growth media (soil and water), organisms, and ecosystems. For example, the growing imbalance between N and P that results from very large anthropogenic inputs of reactive N and smaller inputs of P into the biosphere is increasingly affecting the health of both ecosystems and humans. In this review, we summarise recent advances in ecological stoichiometry and identify key questions for future research on the impacts of ES on ecosystem function and structure due to global environmental change.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1433831921000238; http://dx.doi.org/10.1016/j.ppees.2021.125611; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85105556311&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1433831921000238; https://dx.doi.org/10.1016/j.ppees.2021.125611
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know