Improving the environmental compatibility of enzymatic synthesis of sugar-based surfactants using green reaction media
Process Biochemistry, ISSN: 1359-5113, Vol: 117, Page: 30-41
2022
- 12Citations
- 35Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The enzymatic synthesis of sugar-based surfactants is often performed in non-conventional media that do not meet any longer the current environmental acceptability, especially for biodegradability and cytotoxicity. In this work, we propose innovative sustainable routes by replacing the current reference organic solvent, 2-methyl-2-butanol (2M2B) by either 2-methyltetrahydrofuran (MeTHF), an agrosolvent, or 2-methyltetrahydrofuran-3-one (MeTHF-3-one), a food-grade ingredient used as solvent. These two neoteric solvents were thus evaluated as reaction media via a lipase-catalyzed esterification of glucose by lauric acid and revealed a novel matter of interest. The regioselectivity of the reaction was mainly directed toward the primary alcohol of glucose maintaining the end-product obtained in 2M2B: D -glucose-6-O-laurate. The PLS-Surface Response Design evidenced enzymatic performances in ester production of 48% in MeTHF and 79% in MeTHF-3-one. The latter solvent resulted not only in better yields compared to 2M2B, but also in an increased enzymatic stability, allowing better reuse of the catalyst. MeTHF-3-one has been shown to be readily biodegradable according to OECD standards. Herein, this solvent has been substantiated for the first time as a green medium in an efficient, selective and sustainable enzymatic synthesis of sugar esters.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1359511322000976; http://dx.doi.org/10.1016/j.procbio.2022.03.015; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85127088196&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1359511322000976; https://dx.doi.org/10.1016/j.procbio.2022.03.015
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know