Efficient enzymatic saccharification of agricultural wastes for the production of bioethanol, D-allulose and lactic acid
Process Biochemistry, ISSN: 1359-5113, Vol: 144, Page: 54-63
2024
- 1Citations
- 8Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The demand for renewable resources to replace fossil fuels has increased. Fruit and agricultural wastes can be fermented to yield biofuels and biochemicals. However, the high cost of the feedstock and limitations of the catalytic process hinder the application of such wastes. Therefore, we aimed to develop an efficient enzymatic saccharification process, without pretreatment, for fruit and agricultural wastes. The conversion rate of the mixed agricultural wastes (MAW) to fermentable sugars was approximately 91 % after 24 h. The ethanol yield increased by 4.5 % after limonene removal. The D-allulose yield in the hydrolysate was 4.6 mg/mL at 4 °C and 3.3 mg/mL at 50 °C, whereas the fructose yield in the sugar medium was 13.2 mg/mL at 4°C, demonstrating a high conversion yield of 73.2 %. Lactic acid was produced at a conversion rate of approximately 67.4 %. Therefore, this study presents a novel approach of the biosynthesis of functional sugars and chemicals from waste biomass, introducing a cost-effective enzymatic saccharification process that bypasses pretreatment, thereby enabling the production of biofuels, biochemicals, and functional sugars and opening up a promising economic opportunity in the field.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1359511324001508; http://dx.doi.org/10.1016/j.procbio.2024.05.009; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85193805089&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1359511324001508; https://dx.doi.org/10.1016/j.procbio.2024.05.009
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know